
64 The Delphi Magazine Issue 63

The Delphi
CLINIC

Edited by Brian Long

Problems with your Delphi project?

Just email Brian Long, our Delphi
Clinic Editor, on clinic@blong.com

InterBase Generators

QI have master and detail
tables in an InterBase data-

base and I’m using TQuery compo-
nents to select, insert and update.
The tables have a common linking
unique key field and I use an
InterBase generator to make new
values for it when new master
records are inserted.

Once I execute the query to
insert a new record (and use the
generator to make a new unique
value) how do I read the record
back? I cannot find a way to identify
the new record, since the unique
key was generated by InterBase
itself, and so I don’t know its value.
This means I cannot insert detail
records linked to the new master
record. How do I fix this?

AFor any readers who are
unaware, a generator is a

mechanism in InterBase for gener-
ating unique, sequential numbers.
You can find information on how to
create generators in the InterBase
online help.

InterBase allows you to write a
special query (or stored proce-
dure) that will return the current

value of any generator. It relies on
operating against one of the
InterBase system tables. Given a
generator X, the following query
will generate a one-record, one-
field result set with the generator
X’s current value in it:

SELECT GEN_ID(X, 0)
FROM RDB$DATABASE

Whenever you need to know the
value, you can execute this query
and read the first field in the first
(indeed only) record. In other
words, you read the Fields[0].
AsInteger property.

Alternatively, you can substitute
the 0 for a 1, and the generator will
increment and return the new
value. This gives the next unique
number in the generator series,
meaning that instead of calling
GEN_ID in the next INSERT query,
you can instead use a parameter
which gets set to this new value.

Another possibility is the
AutoGenerateValue property of a
TField, which is an attempt to
workaround the complexities of
this without coding. This property
was added in Delphi 5 and you can
see how it works with a simple
experiment based on the sample
InterBase database, accessed via
the IBLOCAL alias.

The sample CUSTOMER table has a
trigger set up, so any new inserted
record gets a CUST_NO field value
from the CUST_NO_GEN generator
(see Figure 1). This means that
if you insert a new record in the
CUSTOMER table, you can put any
garbage value you like in the
CUST_NO field, but by the time the
record is stored, it will have a
correct, unique value from the
generator.

The CUSTOMER table from this
database has an associated detail
table, SALES. GenVal.dpr is a simple
project that has two TTable
components on its form
(tblCustomer and tblSales), show-
ing the CUSTOMER and SALES tables
from the database, connected in a
master/detail relationship.

The tblCustomer component has
its AutoRefresh property set to
True, which is necessary for the
AutoGenerateValue property to
work. The Fields Editor is used to
make persistent field objects for all
fields in the table, and the CUST_NO
field object has the AutoGenerate-
Value property set to arAutoInc
(the field is, after all, an automati-
cally incrementing field). The
Required property is then set to
False since, although the field
must ultimately have a value, it will
get one thanks to the trigger.

If you run the application and
insert a new record in the CUSTOMER
grid (by pressing the Insert key),
you can enter new customer
details. Ignore the CUST_NO field
when entering data, but look what
happens to it when you post a new
record. You will see that it is filled
in with the value that was written
by the trigger (the new generator
value).

The application also has a label
at the bottom of the form which is
updated when the program starts,
and after each post operation on
the CUSTOMER table. It runs a simple

➤ Figure 1:
The CUSTOMER table trigger.

November 2000 The Delphi Magazine 65

query that follows the scheme
outlined earlier, in order to report
the current generator value (see
Figure 2).

VCL Debugging Query

QA quick but baffling ques-
tion: since moving up to

Delphi 5, I am now sent deep into
the VCL code whenever I am de-
bugging. For example, I’ll try to do
an F7 (or Shift+F7) on one of my
function calls, and suddenly I’ll
find myself in the Classes, Controls
or Forms VCL unit source file.

I’ve removed any VCL path from

Project|Options...|Directories/
Conditionals|
Debug source path

to no avail. How can I set up the
debugger so that, by default, I only
debug my own code?

AThe option you chose to
modify has no effect on this

particular problem. The Debug
source path option is designed to
allow the debugger to find your
source files, in the event that you
have moved them to a new
directory since the last
compilation.

The debugger locates the VCL
and RTL source code (when it
needs it) thanks to Tools | Envi-
ronment Options... Library |
Browsing path. But you should not
change the paths in this entry
(unless you move the VCL/RTL
source). Instead, you should tell
the debugger to use the non-debug
versions of the pre-compiled
VCL/RTL units, rather than the
debug versions, which it is
currently doing.

Delphi 5 has a new compiler
option on the Compiler page of the
project options dialog called Debug
DCUs. By default it is off, meaning
that the compiler will use the
VCL/RTL DCUs from Delphi’s Lib
directory. These DCUs were com-
piled with no debug information
within them.

When the option is on (as it is in
the questioner’s case), the com-
piler uses DCUs from Delphi’s
Lib\Debug directory. These were

compiled with debug
information, and the
debugger uses the afore-
mentioned Browsing path
entry to locate the corre-
sponding source files, so
it can load them into the
editor as required and
show which source lines
are being stepped
through.

In short, turn Debug
DCUs off to solve the
problem.

BDE Paradox User Limit

QI vaguely remember there is
some kind of limitation to

Paradox database performance if
there are more than 20 or so in-
stances of the same program run-
ning, writing to the same local
Paradox database at the same
time. However, I can’t find anything
on this topic in the help file. Do you
know anything about it?

AThe documented limits for
the BDE are at:

http://community.borland.com/
article/0,1410,15159,00.html

and include a limit of 48 BDE clients
on a system and 63 Paradox ses-
sions with tables open on a system.

None of the limits in the docu-
ment seem to be as restrictive as
the questioner suggests, but there
is also another problem of using
the BDE with CGI type web applica-
tions that would be limiting in this
way. The problem is hinted at in
the BDEREADME.TXT file, where it
says too many BDE initialisations
can yield the error: Operation not
applicable. The file does not
mention the exact limits, but you
would be restricted to about 30
concurrent connections.

Strange Form Behaviour

QI’m trying to make a sort of
message form which can

appear on the screen for a few

seconds when the program is
busy. I invoke the form with a call
to its Show method, execute the
‘busy’ code, then call the form’s
Hide method. The message form
appears on the screen, but the
strange thing is that all the label
captions are missing. Do you have
an explanation?

AThis situation is much like
the one you face when

invoking a splash screen, and has
much the same solution.

Calling a form’s Show method
causes the basic form shape to be
drawn on the screen, but all the
details on the form will be drawn
the next time a WM_PAINT message
is processed. Unfortunately, if you
follow the call to Show with more
time-consuming code, which is
then followed by code that hides
the form, no message processing
takes place for that form.

With a splash screen, calling
Show and then creating all the rest
of the auto-created forms, fol-
lowed by hiding the splash screen
would pose the same problem: no
message processing takes place,
so no drawing takes place on the
form.

So now on to the obvious ques-
tion: Why does no message process-
ing take place in these scenarios?
To answer the question relies on
knowing how Windows applica-
tions work. Windows is a message-
driven system and Windows appli-
cations operate by waiting for
messages of interest to arrive so
they can be processed. In fact, the

➤ Figure 2: The
auto-refreshed field.

66 The Delphi Magazine Issue 63

individual windows in a Windows
application are waiting for specific
messages of interest to arrive.

Messages arrive in one of two
ways. Either they are directly
handed to the target window for
immediate processing or they are
placed in an application message
queue for processing at the next
convenient moment. Keyboard,
mouse and paint messages are
queued and so are not processed
immediately.

At the heart of any Delphi appli-
cation is a message loop (some-
times called a message pump) that
keeps plucking messages out of the
queue, one at a time, and sending
each one to the target window.
Take, for example, a message that
indicates a button has been
pressed. This message will be
removed from the queue and
passed to the button, ultimately
resulting in the button’s OnClick
event handler being executed (if it
exists). What happens in the event
handler may be negligibly short, or
may take some time to execute. In
the questioner’s case, there is
clearly some event handler with
time consuming code in it.

However long the event handler
takes to do its job, the message
loop will be unable to pull any
more messages from the queue
until the event handler finishes and
returns control to the message
loop. In the questioner’s case, an
event handler is executing and
calls the message form’s Show
method. This gets the form’s out-
line drawn on the screen and
causes a WM_PAINT message to be
added to the message queue,
targeted for that form.

However, before the event han-
dler ends, more code executes to
do whatever takes the time, and
then the form is hidden. By the

time the event handler ends and
the WM_PAINT message is pulled for
processing, the target form is no
longer around.

So the problem occurs because
no queued messages are automati-
cally processed whilst an event
handler executes, only between
event handler executions. To fix
the problem we need to know how
to force messages to be processed
at our command.

The traditional solution to this
general problem is to call Applica-
tion.ProcessMessages, which initi-
ates an additional, temporary
message loop, processing the
pending queued messages. The
downside to this approach is that it
is not only paint messages which
get processed, but all messages in
the queue.

The question really calls for
knowing how to force a drawing
operation instantly, rather than
waiting for the paint message to be
pulled from the queue and pro-
cessed. To accommodate this, all
VCL controls have an Update
method that will refresh the view of
the control if a paint message is
pending, otherwise it will do
nothing.

Listing 1 shows the order that
will make things work. Immediately
calling Update after Show will make
sure the form is fully displayed
before the rest of the lengthy code
takes place.

Again, splash screens use a
similar idea. The MastApp demo
(in Delphi’s Demos\DB\MastApp
directory) has a splash screen.
If you view the project source (Pro-
ject | View Source in Delphi 4 or
later) you will see a similar scheme
used.

Task Manager Figure

QI found the Optimised
Working Set response you

gave in Issue 58 most interesting. It

does, however, beg one question.
In NT, Task Manager shows the
memory used by each process. Try
as I may, I cannot find a Delphi/API
procedure which gives the same
information so that I can monitor
memory from within the program.

I have tried GetHeapStatus and
GlobalMemoryStatus and cannot
relate the values obtained to
anything NT reports, at least not
anything useful.

AIt took a bit of searching, but
I found some information on

my MSDN CD. It comes from the
November 1996 issue of Microsoft
Systems Journal in Matt Pietrek’s
Under The Hood column. To quote
Matt: ‘Have you ever wondered
about the Mem Usage column in
the Windows NT 4.0? Where does it
get those numbers from? Those
numbers are the actual working
set of each process.’

He goes on to discuss an NT-only
API called QueryWorkingSet, which
returns information on every
memory page currently in use by a
specified process. To calculate the
working set size, you multiply the
number of pages being used by a
process by the size of a memory
page (which is 4Kb in Win32, but
rather than use a fixed value, you
should get it from a call to the
GetSystemInfo Win32 API). The
working set, therefore, is the
amount of memory used by a given
process for everything (code,
data, resources, and so on).

QueryWorkingSet takes a handle
to the process in question, a
pointer to a block of memory to fill
with memory page data, and the
size of the memory block. It fills the
buffer with a DWord indicating how
many memory pages are to be
described, and then one DWord per
memory page. So the important
figure is in the first DWord in the
memory buffer.

It is handy to have a general idea
of how many pages will be
described so you can make the
memory block large enough. To do
this, observe the figures obtained
in Task Manager whilst your appli-
cation is running, divide by 4
(memory page size) and add some
value to it to allow for growth.

MessageForm := TMessageForm.Create(Application);
try
MessageForm.Show;
MessageForm.Update;
//Lengthy code goes here
MessageForm.Hide

finally
MessageForm.Free;
MessageForm := nil

end;

➤ Listing 1:
Displaying a message form.

November 2000 The Delphi Magazine 67

It is easy to get your own process
ID (GetCurrentProcessId), but to
get a handle to your process
requires a call to OpenProcess. Since
we are merely getting information
about the process, the access
mode parameter value can be
PROCESS_QUERY_INFORMATION.

The event handler in Listing 2
(from the MemSize.dpr project on
the disk) seems to do the job just
fine, displaying the memory usage
in kilobytes in a label (shown in
Figure 3). The application has a
button which creates randomly
placed edit controls as a way of
eating up memory, to test the
accuracy of the memory
measurement.

Note that Delphi 4 was the first
version to have the PSAPI unit,
containing the declaration of
QueryWorkingSet.

Property Editor Question

QI am writing a component
and am having problems

with one of its properties. The
property is basically an integer (a
subrange actually), but like many
of the VCL component properties,
a number of the values are repre-
sented by special constants. I want
the user to be able to enter the con-
stant names in the Object Inspec-
tor, and for the Object Inspector to
automatically display the constant
names for the appropriate values.

I have tried using the Register-
IntegerConsts routine in order to
achieve this goal, but it appears to
do nothing. The Object Inspector
continues to display numbers for
all values of this property.

AUnfortunately, you have
chosen the wrong tool for

this job. RegisterIntegerConsts is
not designed to help the design-
time support offered by the Object
Inspector. Instead, it is designed to
work in conjunction with the
streaming system.

The VCL source code calls Reg-
isterIntegerConsts for TCursor (in
Controls.pas), TColor and TFont-
CharSet (in Graphics.pas). Gen-
erally speaking, you find no design-
time stuff in the VCL source code.
The R&D people strive to keep

design-time code in separate units
(which they supply only a few of, in
Delphi’s Source\ToolsAPI and
Source\Property Editors directo-
ries). The implication, therefore, is
that RegisterIntegerConsts is not a
design-time support helper per se.

The purpose of these calls in the
VCL source is to ensure that when
a form is being streamed to a file,
special numeric values are trans-
lated into more descriptive textual
names. For example, if you look at a
new form in text mode (right click
on it and choose View As Text), its
Color property will be listed as
clBtnFace, rather than $8000000F.
Similarly, if you change the value of
the Cursorproperty, it will be listed
with the descriptive name, rather
than its numeric value.

Streaming is not limited to
design-time. Consider when your
application runs, and you will real-
ise that the linked in form resource
streams have to be read and
turned back into real forms.
Streaming support must be pres-
ent at runtime as well as at
design-time.

RegisterIntegerConsts is a
useful routine, but it only affects
how property values are
streamed. You will also need to
write a property editor to get the
result you seek.

Having isolated the problem,
let’s run through how to use
RegisterIntegerConsts and write a

uses
PSAPI;

procedure TForm1.Timer1Timer(Sender: TObject);
var
SI: TSystemInfo;
PageSize: DWord;
CurrentProcessHandle: THandle;
DWords: array[0..2048] of DWord;
Res: DWord;

const
KiloByte = 1024;

begin
GetSystemInfo(SI);
PageSize := SI.dwPageSize div KiloByte;
CurrentProcessHandle :=
OpenProcess(PROCESS_QUERY_INFORMATION, False, GetCurrentProcessId);

//Working set only valid on NT
if Win32Platform = VER_PLATFORM_WIN32_NT then
if QueryWorkingSet(CurrentProcessHandle, @DWords, SizeOf(DWords)) then
Label1.Caption :=
Format('Working set = %d kb', [DWords[0] * PageSize])

else begin
//If QueryWorkingSet fails, show error no./msg.
Res := GetLastError;
Label1.Caption :=
Format('Cannot calculate working set, Win32 error %d (%s)',
[Res, SysErrorMessage(Res)])

end
else
Label1.Caption := 'Working set only valid on NT platforms'

end;

➤ Listing 2: Memory usage as per Task Manager.

➤ Figure 3: Recreating the Task
Manager’s Mem Usage figure.

68 The Delphi Magazine Issue 63

property editor for a given prop-
erty of a test component. The com-
ponent, TTestComponent, is shown
in Listing 3 and can be found in the
TestComp.pas unit, along with a
subrange type TTestRange. The
component has a property Test of
type TTestRange.

There are two goals with the
component. The first is that a Test
property value of 1 should be
streamed out as trOne (and simi-
larly 2 should be streamed as
trTwo). Note that the default value
of 0 (trZero) will not be streamed
thanks to the default directive
used in Listing 3. The other goal is
that the Object Inspector should
display a Test property value of 0
as trZero (and similarly 1 and 2

should be displayed as trOne and
trTwo respectively).

Firstly the streaming goal, which
is accomplished with Register-
IntegerConsts. Listing 4 shows the
implementation and initialization
sections of the TestComp.pas unit.

The initialization section calls
RegisterIntegerConsts, passing
three parameters. The first is a
pointer to the RTTI information for
the integer type in question. The
other two parameters are refer-
ences to a pair of translation rou-
tines, IdentToTestValue and Test-
ValueToIdent. You can see in the
listing that these routines do very
little except call VCL helper rou-
tines IdentToInt and IntToIdent
(introduced in Delphi 3).

These two routines from the
Classes.pas unit are not docu-
mented in the online help but,
given an array of TIdentMapEntry
records, they translate to and fro
between numbers and their string
representations. TIdentMapEntry is
a record type introduced in Delphi
3, to save defining a new record
each time you want to register new
integer constants.

Another unit is supplied as the
component registration unit:
TestReg.pas. This simply registers
the component. To test the integer
streaming, add TestComp.pas and
TestReg.pas into a new package
and press the package editor’s
Install button. This puts the new
component onto the Clinicpage of
the Component Palette.

Drop an instance of the compo-
nent onto a new form, change the
Test property to 1 or 2, then right
click on the form and choose View
As Text. The component should be
described similar to Listing 5.
Notice the property value is
the readable trOne, rather than
simply 1.

Now onto the property editor.
Before diving in, the component
unit needs an extra utility routine
that will be used by the property
editor, and can also be used by
anything else that needs it. Listing
6 shows the procedure that loops
through the private TIdentMap-
Entry array passing the Name field
to the supplied procedure.

To make the component look
more finished, the property editor
needs to look like Figure 4. It will
have a list of available valid values,
represented as constant names in
an unsorted list. The user can
either choose values from the list,
or type them in manually. When
typing, the user can either enter a
constant name, or enter a literal
number. For example, if the user
enters the number 2, the property
editor will display trTwo.

The code to accomplish this is
shown in Listing 7. The Get-
Attributes method requests a
property editor with an unsorted
list, which works when multiple
components are selected. GetValue
attempts to translate the property
value into a textual name, but will

type
TTestRange = 0..2;

const
trZero = TTestRange(0);
trOne = TTestRange(1);
trTwo = TTestRange(2);

type
TTestComponent = class(TComponent)
private
FTest: TTestRange;

published
property Test: TTestRange read FTest write FTest default trZero;

end;

➤ Listing 3: A test component with special property value constants.

const
TestValues: array[TTestRange] of TIdentMapEntry = (
(Value: trZero; Name: 'trZero'),
(Value: trOne; Name: 'trOne'),
(Value: trTwo; Name: 'trTwo'));

function IdentToTestValue(const Ident: String; var TestValue: Integer): Boolean;
begin
Result := IdentToInt(Ident, TestValue, TestValues);

end;
function TestValueToIdent(TestValue: Integer; var Ident: String): Boolean;
begin
Result := IntToIdent(TestValue, Ident, TestValues);

end;
initialization
RegisterIntegerConsts(TypeInfo(TTestRange), IdentToTestValue, TestValueToIdent)

end.

➤ Listing 4: Ensuring special numbers are streamed out by name.

object TestComponent1: TTestComponent
Test = trOne
Left = 64
Top = 40

end

➤ Listing 5: Textual version of the streamed component.

procedure GetTestRangeValues(Proc: TGetStrProc);
var
I: Integer;

begin
for I := Low(TestValues) to High(TestValues) do
Proc(TestValues[I].Name);

end;

➤ Listing 6: Textual identifier helper routines.

70 The Delphi Magazine Issue 63

use a text version of the number if
it fails.

The property editor uses Get-
Values to fill the drop-down list
with constant names. GetValues
simply calls GetTestRangeValues
from Listing 6. When the user
enters a new value, SetValue is
called and passed the string of
characters that the user entered.
This checks whether the value is
an integer constant, using IdentTo-
TestValue. If it is, the resultant
number is passed to SetOrdValue,
otherwise the originally entered
string is deemed to represent an
integer and so is passed to the
inherited version of SetValue,
which will call StrToInt and pass
the result to SetOrdValue.

Scrolling System Tray Text

QDo you know if it is possible
to write text in the Windows

System Tray? The objective I’m try-
ing to reach is to get something like
the system clock, but displaying
text messages that scroll across a
small area. I’ve followed the article
from The Delphi Magazine (by
Marco Cantù in Issue 12) on tray
icons, but there does not seem to
be an API call that will display text
other than the hint.

ASince system tray icons have
already been covered in an

earlier issue, we need not go back
over the same ground. Instead,
given an understanding of system
tray icons, we need to work out
how to get scrolling text to appear.

The solution I have come up with
involves using an icon as normal,
but writing the desired text across
it. A timer tick will prompt the icon
to be cleared and the text written
again with the origin moving left-
wards, and the system tray to be
updated with the modified icon.
This will have the effect of scrolling
text. If we take care to reset the
origin back to the right side of the
icon once the text has ‘fallen off’
the left side of the icon, the scroll-
ing text will keep wrapping around,
giving a never-ending scrolling
message.

It should be mentioned that writ-
ing text on an icon is not particu-
larly easy, given that it has no
canvas. Consequently, I’ve taken a
roundabout route here. I’m writing
text on a bitmap, adding the
bitmap to an image list and asking
the image list to create an icon out
of the bitmap.

The code for an application
which accomplishes the require-
ments is shown almost in its
entirety in Listing 8, so let’s take a
look through it.

When the form is created (in
FormCreate) the TIcon and TBitmap
are created. The bitmap is set the
same size as a small icon and has
various attributes set, including
the background colour. This is set
to clWindow (which is white by
default) and this colour will be
made transparent in the resultant
icon.

When drawing text on the
bitmap, the origin (and therefore
the text) moves to the left. To make
the text start scrolling in from the
right hand side, the starting posi-
tion (DrawOffset) is set to the right

hand side of the bitmap. After set-
ting up the dimensions of the
image list (the same as the
bitmap), ImgListToSysTray is called
to add the (currently blank) icon
onto the system tray.

ImgListToSysTray empties any
detritus from the image list, then
adds the bitmap to it, turning the
background transparent. The
same image is then extracted from
the image list as an icon, whose
handle can be used to set one of
the fields of a TNotifyIconData
record. Other fields are also set to
identify the icon (using the form’s
window handle and an ID number)
and specify which additional fields
in the record are valid. In this case,
we are setting an icon and a tooltip,
so the appropriate fields are given
sensible values.

The record is then passed to
Shell_NotifyIcon. The first time it
is called, the bitmap is blank, so we
get a transparent icon added (the
NIM_ADD flag passed to ImgList-
ToSysTray adds an icon).

➤ Listing 7: The property editor
class and registration.

type
TTestProperty = class(TIntegerProperty)
public
function GetAttributes: TPropertyAttributes; override;
function GetValue: string; override;
procedure GetValues(Proc: TGetStrProc); override;
procedure SetValue(const Value: string); override;

end;
function TTestProperty.GetAttributes: TPropertyAttributes;
begin
//Request list of values
Result := [paMultiSelect, paValueList, paRevertable];

end;
function TTestProperty.GetValue: string;
begin
//Try and get nice textual name
if not TestValueToIdent(TTestRange(GetOrdValue), Result)
then
Result := IntToStr(GetOrdValue)

end;
procedure TTestProperty.GetValues(Proc: TGetStrProc);

begin
//Call subrange type helper routine
GetTestRangeValues(Proc);

end;
procedure TTestProperty.SetValue(const Value: string);
var
NewValue: Longint;

begin
//Try and translate from textual name
if IdentToTestValue(Value, NewValue) then
SetOrdValue(NewValue)

else
//Otherwise use numeric value
inherited SetValue(Value);

end;
procedure Register;
begin
RegisterComponents('Clinic', [TTestComponent]);
RegisterPropertyEditor(TypeInfo(TTestRange),

TTestComponent, 'Test', TTestProperty)
end;

➤ Figure 4: The new property
editor displaying constant
names.

72 The Delphi Magazine Issue 63

type
TForm1 = class(TForm)
chkActive: TCheckBox;
ImageList: TImageList;
Timer: TTimer;
procedure FormCreate(Sender: TObject);
procedure FormDestroy(Sender: TObject);
procedure TimerTimer(Sender: TObject);
procedure chkActiveClick(Sender: TObject);

private
Bmp: TBitmap;
Icon: TIcon;
TextWidth,
DrawOffset: Integer;
procedure ScrollText;
procedure ImgListToSysTray(Operation: DWord);

end;
...
const
ScrollingText =
'The Delphi Clinic, only in The Delphi Magazine.';

procedure TForm1.ScrollText;
begin
//Refill bitmap with white
Bmp.Canvas.FillRect(Rect(0, 0, Bmp.Width, Bmp.Height));
//Draw text from starting offset
Bmp.Canvas.TextOut(DrawOffset, 0, ScrollingText);
//Move offset leftwards
Dec(DrawOffset, 2);
if DrawOffset <= -Textwidth then
//If at end of text, reset offset
DrawOffSet := Bmp.Width;

ImgListToSysTray(NIM_MODIFY);
end;
procedure TForm1.ImgListToSysTray(Operation: DWord);
const
ClinicID = 100;

var
BmpIndex: Integer;
NID: TNotifyIconData;

begin
// Clear image list and add bitmap, with background made
// transparent
ImageList.Clear;
BmpIndex :=
ImageList.AddMasked(Bmp, Bmp.Canvas.Brush.Color);

ImageList.GetIcon(BmpIndex, Icon);
//Setup TNotifyIconData record

FillChar(NID, SizeOf(NID), 0); //Clear record
NID.cbSize := SizeOf(NID); //Set byte count field
NID.Wnd := Handle; //Set owner
NID.uID := ClinicID; //Set icon ID
//Identify which other fields are valid
NID.uFlags := NIF_ICON or NIF_TIP;
NID.hICon := Icon.Handle; //set icon handle
//Set tooltip
NID.szTip :=
'The Delphi Clinic System Tray Text Scroller';

//Set icon in system tray
Win32Check(Shell_NotifyIcon(Operation, @NID));

end;
procedure TForm1.FormCreate(Sender: TObject);
begin
//Create icon
Icon := TIcon.Create;
//Set up bitmap
Bmp := TBitmap.Create;
Bmp.Width := GetSystemMetrics(SM_CXSMICON);
Bmp.Height := GetSystemMetrics(SM_CYSMICON);
Bmp.Canvas.Brush.Color := clWindow;
Bmp.Canvas.Font.Name := 'Verdana';
Bmp.Canvas.Font.Size := 10;
Bmp.Canvas.Font.Color := clWindowText;
TextWidth := Bmp.Canvas.TextWidth(ScrollingText);
//Start text off at right-hand side of bitmap
DrawOffSet := Bmp.Width;
//Set up image list
ImageList.Width := Bmp.Width;
ImageList.Height := Bmp.Height;
ImgListToSysTray(NIM_ADD);

end;
procedure TForm1.FormDestroy(Sender: TObject);
begin
//Remove icon from system tray and tidy up
ImgListToSysTray(NIM_DELETE);
Bmp.Free;
Icon.Free;

end;
procedure TForm1.TimerTimer(Sender: TObject);
begin
ScrollText

end;
procedure TForm1.chkActiveClick(Sender: TObject);
begin
Timer.Enabled := chkActive.Checked

end;

A timer ticks every 50 millisec-
onds causing ScrollText to be
called. This simple method fills the
bitmap with white background and
draws the text at the current offset,
before shifting the offset along (it
wraps back to the start if it goes too
far). Another call to ImgList-
ToSysTray with a NIM_MODIFY param-
eter replaces the old icon with the
new one. With this happening 20
times per second, the scrolling
looks acceptable.

A checkbox on the form allows
the scrolling to be stopped and
started as the user likes. The event

handler simply tog-
gles the state of the
timer’s Enabled prop-
erty. Finally, when the
form is destroyed, the
bitmap and icon
objects are freed and
the icon is removed
from the system tray.

You can see (well,
almost) the program

running in Figure 5. The tooltip and
form are clearly visible and, with
some imagination, you can see
where the message text scrolls
across (the word Delphi is just
starting to be displayed). To save
your imagination, just load the

➤ Listing 8: Scrolling text on a
system tray icon.

➤ Figure 5: The system tray icon,
scolling its text.

SysIcon.dpr project on this
month’s disk and run it in any
32-bit version of Delphi.

Acknowledgements
Thanks go to Steve Axtell from
Inprise for the InterBase and BDE
help this month.

	InterBase Generators
	VCL Debugging Query
	BDE Paradox User Limit
	Strange Form Behaviour
	Task Manager Figure
	Property Editor Question
	Scrolling System Tray Text
	Acknowledgements

